The Crystal Structure of the Monoclinic Form of Dilituric Acid Trihydrate

By B. M. Craven, S. Martinez-Carrera and G. A. Jeffrey
The Crystallography Laboratory, The University of Pittsburgh, Pittsburgh 13, Penna., U.S.A.

(Received 12 August 1963)

Abstract

The structure of the monoclinic form of the trihydrate of dilituric acid (5-nitrobarbituric acid), $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{5} \mathrm{~N}_{3} .3 \mathrm{H}_{2} \mathrm{O}$, has been determined by a three-dimensional X-ray analysis using photographic data. There are two crystallographically independent dilituric acid molecules and six water molecules in the unit cell. Both the acid molecules are the aci triketo tautomeric form, in contrast to those in the anhydrous crystals which are the diketo monohydroxy tautomers (Bolton, 1963a). The dilituric acid molecules form hydrogen-bonded sheets which are approximately coplanar and parallel to (010). The water molecules are hydrogen-bonded in channels with an 'ice-like' hydrogenbond chain parallel to the b axis. There are two unusually short oxygen-oxygen distances of 2.38 and $2 \cdot 47 \AA$. There are 22 oxygen to oxygen and oxygen to nitrogen distances less than $2 \cdot 9 \AA$, and only 18 protons, per asymmetric unit. Although the hydrogen atom positions have not been determined, it is believed that there are four bifurcated hydrogen bonds between the water molecules and dilituric acid molecules. There is no intramolecular hydrogen-bonding, as was observed in the diketo monohydroxy molecules of the anhydrous crystals (Bolton, 1963a).

Introduction

Dilituric (5-nitrobarbituric) acid trihydrate, (I), has been reported by Bolton (1963a) to exist in both a monoclinic and triclinic form of which the monoclinic

form is stable in air at room temperature. The crystals of both hydrates show marked cleavage (monoclinic on (010), triclinic on (110)) and a preliminary investigation of their structures showed that, in both, the molecules lay in approximately planar sheets parallel to the cleavage plane and separated by $3 \cdot 2 \AA$.

The present work was undertaken in order to investigate particularly the nature of hydrogen bonding with the water molecules and to compare the structure and tautomeric form of the dilituric acid molecule in
the trihydrate crystals with that in the anhydrous crystals studied by Bolton (1963a).

Experimental

Colorless crystals of the monoclinic form of dilituric acid trihydrate were obtained by the slow evaporation of an aqueous solution at room temperature. The crystals were prisms elongated along b with welldeveloped (101) faces. The crystal data are as follows,

$$
\begin{aligned}
& a=20.911 \pm 0.008 \AA, b=6 \cdot 452 \pm 0.006 \AA \\
& c=14 \cdot 114 \pm 0.005 \AA ; \beta=110^{\circ} 48^{\prime} \pm 10^{\prime} ; \\
& D_{m}=1.690 \mathrm{~g} . \mathrm{cm}^{-3}, D_{x}=1.695 \mathrm{~g} . \mathrm{cm}^{-3} ; Z=8 .
\end{aligned}
$$

Space group, $P 2_{1} / n$, from systematically absent spectra, $h 0 l$ for $h+l$ odd, $0 k 0$ for k odd. The cell parameters were measured with a General Electric XRD 5 diffractometer and single-crystal orienter, with $\mathrm{Cu} K \alpha$ radiation. The intensity data were recorded from crystals of dimensions $0.1 \times 0.2 \times 0.4 \mathrm{~mm}$ on multifilm equi-inclination integrated Weissenberg photographs, with $\mathrm{Cu} K \alpha$ radiation. The integrated intensities, which were measured by microphotometer, ranged from 1 to 5000 on an arbitrary scale. The recorded data consisted of five layers with a crystal mounted on b and nine layers with a crystal mounted on [101]. It was found that the intensities of the reflections fall off very rapidly with increasing k, a result which was attributed partly to considerable anisotropy in thermal vibrations and partly to the tendency for the crystal to deform along the $[b]$ direction. Because of the difficulty in indexing the reflections in the higher layers, the structure analysis was based on the intensities of the reflections $h k l$ up to a maximum value $k=4$. A total of 2500 independent reflections were

Fig. 1. Dilituric acid trihydrate. Patterson section $v=0$, showing the symmetrical distribution of intramolecular vector peaks around the origin.
measured, of which 688 were too weak to be estimated. These unobserved reflections were assigned intensities of half the minimum observable value. The data reduction was carried out by means of a series of FORTRAN programs for the IBM 7070 computer (Craven, 1963), which incorporated interlayer scaling by a leastsquares method similar to that described by Rollett \& Sparks (1960). The intensity data were not corrected for X-ray absorption.

The determination of the structure

Although the absent spectra were consistent with the space group $P 2_{1} / n$, this did not necessarily eliminate the possibility of the space group being $P 2 / n$ or $P n$. The very intense reflections 020 and 040 indicated that the structure consisted of almost coplanar sheets of atoms separated by $b / 2$, and in such a structure the odd order of reflections 010 and 030 would be expected to be very weak, irrespective of whether the layers were related by twofold screw axes. However, it was observed that the structure was pseudo B centered (reflections $h k l$ were, in general, weak when $h+l$ was odd), and this required the molecular sheets to lie close to the glide planes, rather than interleaving them. In this case, space groups $P n$ and $P 2 / n$ are improbable, since if the structure possessed either of these space groups, adjacent layers would be crystallographically independent and it was considered unlikely that there would be two different modes of
molecular packing within a sheet of a given lattice periodicity. Although such possibilities were considered, only one trial structure could be derived which satisfied the requirements of molecular packing and hydrogen bonding and this corresponded to the space group $P 2_{1} / n$. This model was later confirmed by the completed structure analysis.
The three-dimensional Patterson synthesis was calculated by a Fourier program of McMullan, Chu \& Shiono (1963) for the IBM 7070 computer. In the section $v=0$, which is shown in Fig. 1, the set of six peaks surrounding the origin at a distance of $2.5 \AA$ required the 5 -nitrobarbituric acid molecules to be in one of two orientations related by a center of symmetry. Thus the crystallographically independent dilituric acid molecules within a given sheet must be related by a pseudo-center of symmetry. These results were in agreement with the trial model which had previously been derived. Assuming this trial model for a given sheet, it was necessary to study the Patterson

Fig. 2. Dilituric acid trihydrate. Patterson section $v=\frac{1}{2}$.

Fig.3. (a) Dilituric acid trihydrate. Difference Fourier synthesis at $y=\frac{1}{\prime}$; positive area unshaded, negative area shaded; maximum value $\pm 0 \cdot 30$ e. \AA^{-3}. (b) Fourier synthesis at $y=0 \cdot 250$, with $W(4)$ (dotted Iines) inserted from section $y=0 \cdot 100$. Contour intervals 1 e. \AA^{-3}, zero omitted.

Table 2. Fractional atomic coordinates and thermal parameters
(With estimated standard deviations in parentheses)

Molecule A									
Atom	x	y	z	B11	B22	B33	B12	B23	B31
$\mathrm{N}(1)$	$\begin{gathered} 0.5973 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2339 \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.5669 \\ (0.0004) \end{gathered}$	$\begin{gathered} 2 \cdot 19 \\ (0 \cdot 18) \end{gathered}$	$\begin{gathered} 4 \cdot 82 \\ (0 \cdot 45) \end{gathered}$	$\begin{gathered} 2 \cdot 57 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} -0.06 \\ (0.44) \end{gathered}$	$\begin{gathered} -0.07 \\ (0.50) \end{gathered}$	$\begin{gathered} 1 \cdot 27 \\ (0 \cdot 29) \end{gathered}$
$\mathrm{C}(2)$	$\begin{gathered} 0.6542 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.2304 \\ (0.0013) \end{gathered}$	$\begin{gathered} 0.5420 \\ (0.0004) \end{gathered}$	$\begin{gathered} 1 \cdot 80 \\ (0 \cdot 20) \end{gathered}$	$\begin{gathered} 3.94 \\ (0.53) \end{gathered}$	$\begin{gathered} 2.91 \\ (0.27) \end{gathered}$	$\begin{gathered} -0.84 \\ (0.48) \end{gathered}$	$\begin{gathered} -0.15 \\ (0.61) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.35) \end{gathered}$
$\mathrm{O}(2)$	$\begin{gathered} 0.6507 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2304 \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.4519 \\ (0.0003) \end{gathered}$	$\begin{gathered} 2 \cdot 20 \\ (0 \cdot 16) \end{gathered}$	$\begin{gathered} 8.02 \\ (0.47) \end{gathered}$	$\begin{gathered} 1.74 \\ (0.17) \end{gathered}$	$\begin{gathered} -0.32 \\ (0 \cdot 43) \end{gathered}$	$\begin{gathered} 0.22 \\ (0 \cdot 47) \end{gathered}$	$\begin{gathered} 1 \cdot 14 \\ (0 \cdot 24) \end{gathered}$
N(3)	$\begin{gathered} 0.7152 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2246 \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.6185 \\ (0.0004) \end{gathered}$	$\begin{gathered} 2 \cdot 70 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} 5.70 \\ (0.53) \end{gathered}$	$\begin{gathered} 3.58 \\ (0.27) \end{gathered}$	$\begin{gathered} -0.44 \\ (0.50) \end{gathered}$	$\begin{gathered} -0.10 \\ (0.61) \end{gathered}$	$\begin{gathered} 1 \cdot 66 \\ (0.34) \end{gathered}$
C(4)	$\begin{gathered} 0.7237 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.2189 \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.7201 \\ (0.0004) \end{gathered}$	$\begin{gathered} 1.47 \\ (0.17) \end{gathered}$	$\begin{gathered} 3.01 \\ (0.46) \end{gathered}$	$\begin{gathered} 1 \cdot 83 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} -0.02 \\ (0.41) \end{gathered}$	$\begin{gathered} 0 \cdot 17 \\ (0 \cdot 49) \end{gathered}$	$\begin{gathered} 0.84 \\ (0 \cdot 28) \end{gathered}$
O(4)	$\begin{gathered} 0.7843 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2160 \\ (0.0009) \end{gathered}$	$\begin{gathered} 0.7825 \\ (0.0003) \end{gathered}$	$\begin{gathered} 2 \cdot 14 \\ (0 \cdot 17) \end{gathered}$	$\begin{gathered} 6.51 \\ (0.43) \end{gathered}$	$\begin{gathered} 2.75 \\ (0.20) \end{gathered}$	$\begin{gathered} 0 \cdot 19 \\ (0 \cdot 41) \end{gathered}$	$\begin{gathered} 0.42 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.94 \\ (0 \cdot 28) \end{gathered}$
C(5)	$\begin{gathered} 0.6626 \\ (0.0003) \end{gathered}$	$\begin{gathered} 0.2235 \\ (0 \cdot 0013) \end{gathered}$	$\begin{gathered} 0.7444 \\ (0.0005) \end{gathered}$	$\begin{gathered} 2 \cdot 24 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} 4 \cdot 02 \\ (0.53) \end{gathered}$	$\begin{gathered} 3 \cdot 23 \\ (0 \cdot 28) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.50) \end{gathered}$	$\begin{gathered} -0.66 \\ (0.61) \end{gathered}$	$\begin{gathered} 1 \cdot 21 \\ (0.37) \end{gathered}$
N(5)	$\begin{gathered} 0.6682 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2185 \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.8462 \\ (0.0003) \end{gathered}$	$\begin{gathered} 1.77 \\ (0.16) \end{gathered}$	$\begin{gathered} 3.78 \\ (0.41) \end{gathered}$	$\begin{gathered} 1 \cdot 64 \\ (0.18) \end{gathered}$	$\begin{gathered} -0.22 \\ (0.38) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.43) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.25) \end{gathered}$
$\mathrm{O}(5)$	$\begin{gathered} 0.7233 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2184 \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.9160 \\ (0.0004) \end{gathered}$	$\begin{gathered} 1 \cdot 98 \\ (0 \cdot 18) \end{gathered}$	$\begin{aligned} & 11.49 \\ & (0.64) \end{aligned}$	$\begin{gathered} 2 \cdot 22 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.55) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.63) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.31) \end{gathered}$
$\mathrm{O}(7)$	$\begin{gathered} 0.6130 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2224 \\ (0.0010) \end{gathered}$	$\begin{gathered} 0.8667 \\ (0.0003) \end{gathered}$	$\begin{gathered} 2.37 \\ (0.16) \end{gathered}$	$\begin{gathered} 7.55 \\ (0 \cdot 47) \end{gathered}$	$\begin{gathered} 2.41 \\ (0.19) \end{gathered}$	$\begin{gathered} 0 \cdot 47 \\ (0 \cdot 43) \end{gathered}$	$\begin{gathered} -0.09 \\ (0.49) \end{gathered}$	$\begin{gathered} 1 \cdot 42 \\ (0 \cdot 26) \end{gathered}$
$\mathrm{C}(6)$	$\begin{gathered} 0.5969 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2326 \\ (0.0013) \end{gathered}$	$\begin{gathered} 0.6641 \\ (0.0004) \end{gathered}$	$\begin{gathered} 2.02 \\ (0.18) \end{gathered}$	$\begin{gathered} 3.61 \\ (0.52) \end{gathered}$	$\begin{gathered} 2 \cdot 29 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} -0.63 \\ (0.45) \end{gathered}$	$\begin{gathered} -0.79 \\ (0.53) \end{gathered}$	$\begin{gathered} 1.56 \\ (0.28) \end{gathered}$
$\mathrm{O}(6)$	$\begin{gathered} 0.5402 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2397 \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.6731 \\ (0.0003) \end{gathered}$	$\begin{gathered} 2 \cdot 32 \\ (0 \cdot 17) \end{gathered}$	$\begin{gathered} 8.74 \\ (0.53) \end{gathered}$	$\begin{gathered} 3 \cdot 19 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} -0.15 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.57) \end{gathered}$	$\begin{gathered} 1 \cdot 62 \\ (0.28) \end{gathered}$

Table 2 (cont.)									
Molecule B									
Atom	x	y	z	Bl1	B22	B33	B12	B23	B31
N(1)	$\begin{gathered} 0.0248 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0.2419 \\ (0 \cdot 0013) \end{gathered}$	$\begin{gathered} 0.7874 \\ (0.0004) \end{gathered}$	$\begin{gathered} 2 \cdot 50 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} 7 \cdot 60 \\ (0.60) \end{gathered}$	$\begin{gathered} 2 \cdot 72 \\ (0 \cdot 25) \end{gathered}$	$\begin{gathered} -1 \cdot 14 \\ (0 \cdot 55) \end{gathered}$	$\begin{gathered} -0.17 \\ (0.64) \end{gathered}$	$\begin{gathered} 1 \cdot 22 \\ (0.35) \end{gathered}$
C(2)	$\begin{gathered} 0.9683 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2347 \\ (0.0011) \end{gathered}$	$\begin{gathered} 0 \cdot 8135 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 1 \cdot 83 \\ (0 \cdot 18) \end{gathered}$	$\begin{gathered} 4 \cdot 06 \\ (0.50) \end{gathered}$	$\begin{gathered} 2 \cdot 06 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} 0 \cdot 74 \\ (0 \cdot 44) \end{gathered}$	$\begin{gathered} -0 \cdot 14 \\ (0 \cdot 52) \end{gathered}$	$\begin{gathered} 1 \cdot 24 \\ (0 \cdot 28) \end{gathered}$
$\mathrm{O}(2)$	$\begin{gathered} 0.9719 \\ (0 \cdot 0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2362 \\ (0 \cdot 0011) \end{gathered}$	$\begin{gathered} 0.9018 \\ (0.0003) \end{gathered}$	$\begin{gathered} 2 \cdot 44 \\ (0 \cdot 17) \end{gathered}$	$\begin{gathered} 6.55 \\ (0.46) \end{gathered}$	$\begin{gathered} 3 \cdot 24 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} 0 \cdot 35 \\ (0 \cdot 43) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.51) \end{gathered}$	$\begin{gathered} 1.55 \\ (0.28) \end{gathered}$
$N(3)$	$\begin{gathered} 0.9066 \\ (0 \cdot 0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2260 \\ (0 \cdot 0011) \end{gathered}$	$\begin{gathered} 0.7363 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 2 \cdot 24 \\ (0 \cdot 14) \end{gathered}$	$\begin{gathered} 4.44 \\ (0.44) \end{gathered}$	$\begin{gathered} 1 \cdot 94 \\ (0 \cdot 19) \end{gathered}$	$\begin{gathered} -0.29 \\ (0.42) \end{gathered}$	$\begin{gathered} -0 \cdot 14 \\ (0 \cdot 47) \end{gathered}$	$\begin{gathered} 1 \cdot 13 \\ (0 \cdot 27) \end{gathered}$
C(4)	$\begin{gathered} 0.8972 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0.2313 \\ (0.0012) \end{gathered}$	$\begin{gathered} 0 \cdot 6343 \\ (0 \cdot 0005) \end{gathered}$	$\begin{gathered} 2 \cdot 45 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} 4 \cdot 46 \\ (0 \cdot 58) \end{gathered}$	$\begin{gathered} 3.05 \\ (0 \cdot 27) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.53) \end{gathered}$	$\begin{gathered} 0.56 \\ (0 \cdot 64) \end{gathered}$	$\begin{gathered} 1.33 \\ (0 \cdot 36) \end{gathered}$
$\mathrm{O}(4)$	$\begin{gathered} 0.8379 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0.2138 \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.5741 \\ (0.0003) \end{gathered}$	$\begin{gathered} 1 \cdot 46 \\ (0 \cdot 14) \end{gathered}$	$\begin{gathered} 5 \cdot 82 \\ (0 \cdot 38) \end{gathered}$	$\begin{gathered} 2 \cdot 17 \\ (0 \cdot 17) \end{gathered}$	$\begin{array}{r} -0.44 \\ (0 \cdot 33) \end{array}$	$\begin{gathered} -0.32 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.65 \\ (0.23) \end{gathered}$
C(5)	$\begin{gathered} 0.9587 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0 \cdot 2369 \\ (0 \cdot 0013) \end{gathered}$	$\begin{gathered} 0 \cdot 6104 \\ (0 \cdot 0005) \end{gathered}$	$\begin{gathered} 1 \cdot 77 \\ (0 \cdot 18) \end{gathered}$	$\begin{gathered} 3 \cdot 85 \\ (0 \cdot 49) \end{gathered}$	$\begin{gathered} 2 \cdot 23 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} -0.72 \\ (0.44) \end{gathered}$	$\begin{gathered} 0 \cdot 50 \\ (0 \cdot 52) \end{gathered}$	$\begin{gathered} 1 \cdot 02 \\ (0 \cdot 29) \end{gathered}$
$N(5)$	$\begin{gathered} 0.9532 \\ (0 \cdot 0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2483 \\ (0 \cdot 0012) \end{gathered}$	$\begin{gathered} 0.5101 \\ (0.0004) \end{gathered}$	$\begin{gathered} 1 \cdot 53 \\ (0 \cdot 16) \end{gathered}$	$\begin{gathered} 4 \cdot 52 \\ (0 \cdot 43) \end{gathered}$	$\begin{gathered} 2 \cdot 04 \\ (0 \cdot 20) \end{gathered}$	$\begin{array}{r} -0.71 \\ (0.39) \end{array}$	$\begin{array}{r} -0.38 \\ (0 \cdot 47) \end{array}$	$\begin{gathered} 0 \cdot 91 \\ (0 \cdot 26) \end{gathered}$
$\mathrm{O}(5)$	$\begin{gathered} 0.8981 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2523 \\ (0 \cdot 0014) \end{gathered}$	$\begin{gathered} 0.4395 \\ (0.0004) \end{gathered}$	$\begin{gathered} 2 \cdot 39 \\ (0 \cdot 18) \end{gathered}$	$\begin{gathered} 9 \cdot 84 \\ (0.55) \end{gathered}$	$\begin{gathered} 2 \cdot 13 \\ (0 \cdot 20) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.50) \end{gathered}$	$\begin{gathered} -0.04 \\ (0.55) \end{gathered}$	$\begin{gathered} 0.96 \\ (0 \cdot 28) \end{gathered}$
$\mathrm{O}(7)$	$\begin{gathered} 0 \cdot 0064 \\ (0 \cdot 0002) \end{gathered}$	$\begin{gathered} 0.2461 \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.4875 \\ (0.0004) \end{gathered}$	$\begin{gathered} 2 \cdot 75 \\ (0 \cdot 19) \end{gathered}$	$\begin{gathered} 9 \cdot 09 \\ (0 \cdot 55) \end{gathered}$	$\begin{gathered} 2 \cdot 93 \\ (0 \cdot 22) \end{gathered}$	$\begin{gathered} 0.67 \\ (0.51) \end{gathered}$	$\begin{gathered} 0.48 \\ (0.58) \end{gathered}$	$\begin{gathered} 1.48 \\ (0 \cdot 30) \end{gathered}$
C(6)	$\begin{gathered} 0 \cdot 0246 \\ (0 \cdot 0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2413 \\ (0 \cdot 0014) \end{gathered}$	$\begin{gathered} 0 \cdot 6886 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 2 \cdot 55 \\ (0 \cdot 23) \end{gathered}$	$\begin{gathered} 5 \cdot 35 \\ (0.58) \end{gathered}$	$\begin{gathered} 2 \cdot 86 \\ (0 \cdot 26) \end{gathered}$	$\begin{gathered} -0 \cdot 22 \\ (0.54) \end{gathered}$	$\begin{gathered} -1 \cdot 41 \\ (0 \cdot 62) \end{gathered}$	$\begin{gathered} 1 \cdot 31 \\ (0 \cdot 36) \end{gathered}$
$\mathrm{O}(6)$	$\begin{gathered} 0.0814 \\ (0.0002) \end{gathered}$	$\begin{gathered} 0 \cdot 2455 \\ (0 \cdot 0012) \end{gathered}$	$\begin{gathered} 0 \cdot 6807 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 1 \cdot 68 \\ (0 \cdot 16) \end{gathered}$	$\begin{gathered} 8 \cdot 37 \\ (0 \cdot 48) \end{gathered}$	$\begin{gathered} 2 \cdot 07 \\ (0 \cdot 18) \end{gathered}$	$\begin{array}{r} -0.36 \\ (0.43) \end{array}$	$\begin{array}{r} -0.09 \\ (0.50) \end{array}$	$\begin{gathered} 0 \cdot 85 \\ (0 \cdot 26) \end{gathered}$
Water molecules									
W(1)	$\begin{gathered} 0 \cdot 3577 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0 \cdot 2204 \\ (0 \cdot 0016) \end{gathered}$	$\begin{gathered} 0.6568 \\ (0 \cdot 0005) \end{gathered}$	$\begin{gathered} 4 \cdot 31 \\ (0 \cdot 30) \end{gathered}$	$\begin{gathered} 8.51 \\ (0.61) \end{gathered}$	$\begin{gathered} 4 \cdot 33 \\ (0 \cdot 33) \end{gathered}$	$\begin{gathered} 0 \cdot 29 \\ (0 \cdot 67) \end{gathered}$	$\begin{gathered} 0 \cdot 25 \\ (0 \cdot 75) \end{gathered}$	$\begin{gathered} 1 \cdot 49 \\ (0 \cdot 48) \end{gathered}$
W(2)	$\begin{gathered} 0 \cdot 4683 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0 \cdot 2464 \\ (0 \cdot 0016) \end{gathered}$	$\begin{gathered} 0.7848 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 3 \cdot 03 \\ (0 \cdot 22) \end{gathered}$	$\begin{aligned} & 14 \cdot 52 \\ & (0 \cdot 83) \end{aligned}$	$\begin{gathered} 2 \cdot 70 \\ (0 \cdot 25) \end{gathered}$	$\begin{gathered} -0.60 \\ (0.71) \end{gathered}$	$\begin{array}{r} -0.45 \\ (0.78) \end{array}$	$\begin{gathered} 1 \cdot 45 \\ (0 \cdot 36) \end{gathered}$
W(3)	$\begin{gathered} 0 \cdot 3665 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0 \cdot 2726 \\ (0 \cdot 0015) \end{gathered}$	$\begin{gathered} 0.4831 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 3 \cdot 96 \\ (0 \cdot 26) \end{gathered}$	$\begin{aligned} & 10 \cdot 59 \\ & (0 \cdot 63) \end{aligned}$	$\begin{gathered} 3 \cdot 59 \\ (0 \cdot 27) \end{gathered}$	$\begin{gathered} 0 \cdot 35 \\ (0 \cdot 64) \end{gathered}$	$\begin{array}{r} -0.38 \\ (0.70) \end{array}$	$\begin{gathered} 1 \cdot 59 \\ (0 \cdot 40) \end{gathered}$
W(4)	$\begin{gathered} 0 \cdot 2527 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0.4201 \\ (0 \cdot 0013) \end{gathered}$	$\begin{gathered} 0 \cdot 6827 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 3 \cdot 92 \\ (0 \cdot 24) \end{gathered}$	$\begin{gathered} 7.88 \\ (0.55) \end{gathered}$	$\begin{gathered} 3 \cdot 20 \\ (0 \cdot 25) \end{gathered}$	$\begin{gathered} 0 \cdot 29 \\ (0 \cdot 57) \end{gathered}$	$\begin{gathered} 0 \cdot 86 \\ (0 \cdot 61) \end{gathered}$	$\begin{gathered} 1 \cdot 36 \\ (0 \cdot 37) \end{gathered}$
W (5)	$\begin{gathered} 0 \cdot 1465 \\ (0 \cdot 0003) \end{gathered}$	$\begin{gathered} 0.2355 \\ (0.0013) \end{gathered}$	$\begin{gathered} 0.5649 \\ (0 \cdot 0004) \end{gathered}$	$\begin{gathered} 3 \cdot 61 \\ (0.23) \end{gathered}$	$\begin{gathered} 7.64 \\ (0.56) \end{gathered}$	$\begin{gathered} 4 \cdot 54 \\ (0 \cdot 29) \end{gathered}$	$\begin{gathered} -0.01 \\ (0.55) \end{gathered}$	$\begin{gathered} -0.09 \\ (0.67) \end{gathered}$	$\begin{gathered} 1.93 \\ (0 \cdot 37) \end{gathered}$
W(6)	$\begin{gathered} 0 \cdot 2533 \\ (0 \cdot 0002) \end{gathered}$	$\begin{gathered} 0.3225 \\ (0 \cdot 0013) \end{gathered}$	$\begin{gathered} 0.8688 \\ (0.0004) \end{gathered}$	$\begin{gathered} 3 \cdot 03 \\ (0 \cdot 21) \end{gathered}$	$\begin{gathered} 9 \cdot 48 \\ (0.59) \end{gathered}$	$\begin{gathered} 3 \cdot 21 \\ (0 \cdot 25) \end{gathered}$	$\begin{gathered} -0.24 \\ (0.56) \end{gathered}$	$\begin{gathered} -0.50 \\ (0.64) \end{gathered}$	$\begin{gathered} 1 \cdot 25 \\ (0 \cdot 35) \end{gathered}$

section at $v=\frac{1}{2}$ in order to determine the relative translation of adjacent sheets, i.e. the positions of the crystallographic centers of symmetry and twofold screw axes with respect to the sheets. It should be noted that, as a result of the pseudo B centering of the lattice, unless atoms are displaced in some way from the glide planes at $y=\frac{1}{4}, \frac{3}{4}$, there is no practical distinction between choosing the origin at a center of symmetry or a twofold screw axis, and at this stage the atomic displacements were unknown. The Patterson section at $v=\frac{1}{2}$ is shown in Fig. 2. There are two large peaks corresponding to the superpositions of the vectors relating similar atoms in adjacent sheets, and it was necessary to select one of these arbitrarily as defining the relative translation of the sheets with respect to a center of symmetry at the crystallographic
origin. This gave a set of x, y, z parameters which were refined by three-dimensional reiterative Fourier methods using at first only the reflections $h k l$ with $h+l$ even, since these were relatively insensitive to errors in the y parameters. An R index of $0 \cdot 26$ was obtained for the reflections $h 0 l$ and $h 1 l$ with $\sin \theta<0.700$ assuming all atoms are at $y=\frac{1}{4}$ or $\frac{3}{4}$. The structure factors for reflections $h k l$ with $h+l$ odd were then calculated for a variety of trial structures in which the dilituric acid molecules and water molecules were displaced by small shifts in various chemically plausible ways from the planes $y=\frac{1}{4}$ and $\frac{3}{4}$. The agreement obtained between observed and calculated structure factors was not generally good, but when one of the more likely trial structures was subjected to Fourier refinement based on all available $h k l$ data, it improved
significantly and converged at a value of $R=0 \cdot 23$. This solution to the phase problem, was, however, obviously false, since two water molecules (W(4) and $\mathrm{W}(6)$) in adjacent layers lay within $2 \cdot 0 \AA$ of each other. Since the structure factors in the $h 0 l$ zone alone gave much better agreement of $0 \cdot 13$, the effect of interchanging the position of the screw axis and symmetry center in the [b] projection was examined. It was then found that further three-dimensional refinement by Fourier and differential synthesis improved the agreement for all $h k l$ reflections to $0 \cdot 18$. The distance between $W(4)$ and $W(6)$ atoms in adjacent sheets was then $2 \cdot 66 \AA$, corresponding to a normal hydrogen bond. The IBM 7070 programs of Shiono (1962) were used. With these coordinates a calculation of the best least-square plane through the individual dilituric acid molecules showed small, but significant, nonplanarity which was difficult to explain on the grounds of stereochemistry, or the presence of close intermolecular contacts. It was now believed that the structure was essentially correct except possibly for certain small displacement of atoms from $y=\frac{1}{4}$. In order to determine whether there was any correlation between the y parameters, the anisotropic thermal parameters B_{22} and errors in the overall scaling factor, a full-matrix least-squares computation was carried out with the program of Busing \& Levy (1959) for the IBM 704 computer. In order to minimize the computations, a relaxation technique was used. The $210 x, z$ and $B_{11}, B_{12}, B_{33}, B_{13}, B_{23}$ parameters were assumed from the previous refinement, and not permitted to vary. Three cycles of least squares on the sixty-one y and B_{22} parameters and the overall scale factor were computed. This reduced the R index to $0 \cdot 16$ for all reflections, or 0.14 omitting the unobserved reflections, and led to small shifts in the y parameters. These shifts were such that, although the 5 -nitrobarbituric acid molecules remained non-planar, the distortions from coplanarity were more reasonable and similar in both molecules. The largest shifts in the y parameters were for atoms $\mathrm{O}(4), 0.082 \AA$, and $\mathrm{O}(5)$, $0.085 \AA$, of molecule B. If an atom was displaced slightly from the plane $y=\frac{1}{4}$, but in the wrong sense, or if the structure was actually disordered with respect to such displacements, it would be expected that there would be considerable correlation between the y parameters and the B_{22} parameters. Such correlations cannot be taken into account in a refinement by differential synthesis, and it was believed that this might have caused the significant differences in the $\mathrm{O}(4)$ and $\mathrm{O}(5) y$ parameters from the differential synthesis and the least-squares refinement. However, the y, B_{22} correlation factors (Geller, 1961) were found on examination to be quite small, the largest being $\varrho\left(y \mathrm{~W}(1), B_{22} \mathrm{~W}(1)\right)=0.07$ and $\varrho\left(y \mathrm{~W}(2), B_{22} \mathrm{~W}(2)\right)=0.05$. The structure refinement was then completed by two more cycles of differential synthesis in which all the parameters were permitted to vary. The final R index was $0 \cdot 150$ for all reflections or $0 \cdot 129$ omitting the un-
observed reflections. A final difference Fourier synthesis was calculated both for the b-axis projection and the three-dimensional sections close to $y=\frac{1}{4}$. The latter is shown in Fig. 3(a). The corresponding Fourier synthesis is shown in Fig. 3(b). There were no large areas of residual electron density, and it proved impossible to locate the hydrogen atoms with any degree of certainty.

The final calculated and observed structure factors are given in Table 1*. The atomic parameters with their estimated standard deviations are listed in Table 2. The bond angles and bond lengths are shown in Table 3. The mean e.s.d. in bond lengths within a sheet is $0.01 \AA$ and in bond angles is 0.3°. The hydrogen bond lengths are shown in Table 4, and other intermolecular approaches less than $4 \cdot 0 \AA$ are listed in Tables 5 and 6. The least-square planes through the

Table 3. Bond lengths and valence angles

Molecule A			
Distances		Angles	
$\mathrm{N}(1)-\mathrm{C}(2)$	$1 \cdot 354 \AA$	$\mathrm{~N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$121 \cdot 8^{\circ}$
$\mathrm{C}(2)-\mathrm{O}(2)$	1.247	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	$120 \cdot 8$
		$\mathrm{~N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$117 \cdot 4$
$\mathrm{C}(2)-\mathrm{N}(3)$	$1 \cdot 349$	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$124 \cdot 7$
$\mathrm{~N}(3)-\mathrm{C}(4)$	$1 \cdot 381$	$\mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$116 \cdot 7$
		$\mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$116 \cdot 9$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 261$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$126 \cdot 4$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.437	$\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(5)$	$122 \cdot 7$
$\mathrm{C}(5)-\mathrm{N}(5)$	$1 \cdot 400$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5)$	$119 \cdot 1$
$\mathrm{~N}(5)-\mathrm{O}(5)$	$1 \cdot 221$	$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{O}(7)$	$118 \cdot 8$
		$\mathrm{~N}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$121 \cdot 3$
$\mathrm{~N}(5)-\mathrm{O}(7)$	$1 \cdot 287$	$\mathrm{O}(7)-\mathrm{N}(5)-\mathrm{C}(5)$	$118 \cdot 4$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 438$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119 \cdot 6$
		$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{N}(1)$	$116 \cdot 6$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1 \cdot 239$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$127 \cdot 0$
$\mathrm{C}(6)-\mathrm{N}(1)$	$1 \cdot 374$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	116.4
		$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	$125 \cdot 2$

Molecule B			
	$1 \cdot 357$ \&	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	122.2°
$\mathrm{C}(2)-\mathrm{O}(2)$	1-222	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	$120 \cdot 9$
		$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	116.9
$\mathrm{C}(2)-\mathrm{N}(3)$	1-363	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$125 \cdot 2$
$\mathrm{N}(3)-\mathrm{C}(4)$	1-382	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.8
		$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	116.9
$\mathrm{C}(4)-\mathrm{O}(4)$	1-234	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	127.0
$\mathrm{C}(4)-\mathrm{C}(5)$	1.442	$\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(5)$	123.0
		$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(5)$	119.1
$\mathrm{C}(5)-\mathrm{N}(5)$	1.381	$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{O}(7)$	117.0
$\mathrm{N}(5)-\mathrm{O}(5)$	$1 \cdot 227$	$\mathrm{N}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	119.9
		$\mathrm{O}(7)-\mathrm{N}(5)-\mathrm{C}(5)$	$120 \cdot 0$
$\mathrm{N}(5)-\mathrm{O}(7)$	1-261	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.0
$\mathrm{C}(5)-\mathrm{C}(6)$	1.428	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{N}(1)$	115.5
		$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	128.8
$\mathrm{C}(6)-\mathrm{O}(6)$	1.234	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	115.7
$\mathrm{C}(6)-\mathrm{N}(1)$	1.392	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	125.3

* Table 1, which is not reproduced here, has been deposited as Document number 7677 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington 25, D.C., U.S.A. A copy may be secured by citing the Document number and remitting $\$ 6.25$ for photoprints or $\$ 2.50$ for 35 mm microfilm. Advance payment is required. Make check or money order payable to Chief, Photoduplication Service, Library of Congress.

Fig. 4. (a) Mean bond lengths and angles in the two crystallographically independent aci-triketo molecules of dilituric acid. (b) Bond lengths and angles in the monohydroxy diketo molecule of dilituric acid (Bolton, 1963a).

Molecule B

Fig. 5. Deviations from planarity in dilituric acid molecules viewed along (010) perpendicular to [c]. The vertical scale is 17 times the horizontal scale.

5-nitrobarbituric acid molecules together with the distances of atoms from these planes are given in Table 7. These structural data were obtained with programs written by Chu (1963) for the IBM 1620 computer.

Discussion

The structure of the dilituric acid molecules
Within the estimated errors of the analysis, the bond lengths and angles of the two crystallographically independent molecules are the same. The averaged values are shown in Fig. $4(a)$. The largest disagreement
in bond lengths between the two molecules is $0.027 \AA$ in $C(4)-0(4)$, and although this corresponds to a quite different intermolecular environment for the carbonyl groups, it is not significant in terms of the calculated standard deviations. Both molecules are somewhat distorted from planarity, as shown in Fig. 5. The pyrimidine rings are not significantly different and both show a tendency to boat-shape. The displacement of the substituent $O(4)$ and the nitro oxygen atoms are significantly different in the two molecules.

The C-O distances correspond to normal carbonyl groups. The difference in the $\mathrm{N}-\mathrm{O}$ distances of $1 \cdot 287$, 1.261 for $\mathrm{N}(5)-\mathrm{O}(7)$ compared with $1 \cdot 221,1.227 \AA$ for

(1)

(I)

(a)

(b)

Fig. 6. Valence bond diagrams for the aci-triketo dilituric acid molecule.
$\mathrm{N}(5)-\mathrm{O}(5)$, shows that the molecules are the aci triketo tautomeric form shown in (I). This is in contrast to the structure of the anhydrous dilituric acid (Bolton, 1963a) where the molecules are the diketo monohydroxy tautomers (Fig. 4(b)). Consequently the strong $\mathrm{C}-\mathrm{OH} \cdots \mathrm{O}=\mathrm{N}$ intramolecular hydrogen bond bound in the anhydrous crystals does not occur in the trihydrate.

The bond length distribution can be accounted for qualitatively in terms of the valence bond diagrams shown in Fig. 6(a), if the forms (I), (II), (III), which

(a)

(b)

Fig. 7. Valence bond diagrams for the monohydroxy diketo molecule of dilituric acid.
have a single charge separation are given double weight relative to those with double charge separation. The bond orders, shown in Fig. 6(b), predict that the $\mathrm{C}(2)-\mathrm{N}(1)$ and $\mathrm{C}(2)-\mathrm{N}(3)$ bonds should be shorter than $\mathrm{C}(6)-\mathrm{N}(1)$ and $\mathrm{C}(4)-\mathrm{N}(3)$, and this is observed experimentally in the mean values of 1.356 and $1.382 \AA$ respectively. The mean C-C bond length is $1 \cdot 436 \AA$ in good agreement with the predicted value of $1.433 \AA$ for a bond of double bond-order $4 / 14$ (Pauling, 1960).

The pyrimidine ring in the triketo form has mm
symmetry, as also observed in both the dihydrate and anhydrous forms of barbituric acid (Jeffrey, Ghose \& Warwicker, 1961 ; Bolton, 1963b). The ring symmetry is reduced to m in the diketo monohydroxy tautomer of the anhydrous crystals, and this can be accounted for by the valence bond diagrams and bond orders shown in Figs. $7(a)$ and (b), which are analogous to those in Figs. 6(a) and (b).

The molecular packing and hydrogen bonding

The crystal structure consists of almost coplanar layers of hydrogen-bonded dilituric acid and water molecules, characteristic of the compact, high density, crystals found in the simple barbiturates and related pyrimidine derivatives. The mean separation between the layers is $3 \cdot 22 \AA$, as compared with $3 \cdot 12 \AA$ in barbituric acid dihydrate (Jeffrey, Ghose \& Warwicker, 1961) and $3 \cdot 10 \AA$ in violuric acid monohydrate (Craven \& Mascarenhas, 1964). Figs. 8(a) and (b) show a single layer and two superimposed layers respectively.

In each layer the nitropyrimidine rings are hydro-gen-bonded in continuous zigzag chains through $\mathrm{N}(1) \mathrm{H} \cdots \mathrm{O}(2)$ and $\mathrm{N}(3) \mathrm{H} \cdots \mathrm{O}(4)$ as shown in formula IV.

Table 4. Hydrogen bonding distances

O \cdots O Hydrogen bonding distances					
i	j	$d(i j)$	i	j	$d(i j)$
W(1)	$W(2)$	$2 \cdot 38$ A	W(4)	W(6)	$2 \cdot 70 \AA$
$\mathrm{O}(6 B)$	W(5)	$2 \cdot 47$	$\mathrm{O}(7 B)$	W(5)	$2 \cdot 74$
W(2)	$\mathrm{O}(6 A)$	$2 \cdot 54$	W(3)	$\mathrm{O}(4 A)$	$2 \cdot 74$
W(4)	W(5)	$2 \cdot 55$	$0(5 A)$	W(3)	2.80
W(3)	W(1)	$2 \cdot 55$	$\mathrm{O}(2 A)$	W(6)	$2 \cdot 81$
$\mathrm{O}(7 A)$	W(5)	$2 \cdot 65$	$\mathrm{O}(4 B)$	W(6)	$2 \cdot 82$
W(1)	W(4)	$2 \cdot 68$	W(3)	$\mathrm{O}(2 B)$	$2 \cdot 82$
W(2)	$\mathrm{O}(7 B)$	$2 \cdot 68$	$\mathrm{O}(7 A)$	W(2)	$2 \cdot 83$
W(4)	W(6)	$2 \cdot 69^{*}$	W(6)	$\mathrm{O}(5 B)$	$2 \cdot 87$
N \cdot O Hydrogen bonding distances					
$\mathrm{N}(1 A)$	$\mathrm{O}(2 B)$	$2 \cdot 83 \AA$	$\mathrm{N}(3 A)$	$\mathrm{O}(4 B)$	$2.85 \AA$
$\mathrm{N}(1 B)$	$\mathrm{O}(2 A)$	$2 \cdot 83$	$\mathrm{O}(4 A)$	$\mathrm{N}(3 B)$	$2 \cdot 86$
A denotes atoms in molecule A. B denotes atoms in molecule B. * Hydrogen-bond between layers.					

The chains are then hydrogen-bonded laterally through the water molecules which lie in channels parallel to the $[b]$ direction and normal to the layers of the acid molecules. Laterally these channels are hydrogen bonded to the pyrimidine $\mathrm{C}=\mathrm{O}$ and $\mathrm{NO}_{2} \mathrm{H}$ substituents through the water molecules $W(2), W(3), W(5)$, $W(6)$. The hydrogen bonding in the [b] direction of
the channel is through a single zigzag chain, $\cdots W(4) \cdots W(6) \cdots W(4) \cdots W(6)$, as illustrated in Fig. 9. This chain is analogous to the hydrogenbonding in the hexagonal axial direction of the ice I structure. The nearly planar layers of nitrobarbituric acid and water molecules are therefore comparatively weakly linked in the $\lfloor b\rfloor$ direction by only one hydro-

Fig. 8. (a) A single hydrogen-bonded layer, with the shorter intermolecular distances. (b) The superposition of adjacent layers.

Fig. 8. (c) Proposed bonding scheme in a single layer.
gen bond per asymmetric unit; since all other intralayer distances are greater than $3 \cdot 18 \AA$, as shown in Table 5. This is consistent with the observed cleavage of the crystals.

With one proton associated with the W(4) •••W(6) interlayer bond, there remain 17 for the hydrogen bonding within the sheets. As shown in Table 4, there are 21 oxygen to oxygen or oxygen to nitrogen distances in the layer which lie in the range of 2.38 to $2.87 \AA$ (Fig. 8(a)). It is reasonable to assume from the stereochemistry that the $\mathrm{NH} \cdots \mathrm{O}$ distances correspond to normal hydrogen bonds. There remain, then, 11 water and 2 acinitro group protons to be distributed over 17 intra-layer $0 \cdots \mathrm{O}$ distances per asymmetric unit of structure. In the absence of definite information about the location of the protons, it is only possible to speculate on which of the $0 \cdots 0$ distances less than $2.87 \AA$ corresponds to normal hydrogen bonds, bifurcated hydrogen bonds, or oxygen to oxygen non-bonding contacts. Some guidance can be obtained from the X-ray and neutron diffraction study of perdeuterated violuric acid monohydrate which is a similar type of high density layered pyrimidine structure (Craven \& Mascarenhas, 1964; Craven \& Takei, 1964). In that structure there are two $\mathrm{N}-\mathrm{D} \cdots \mathrm{O}$ bonds and six $\mathrm{O} \cdots \mathrm{O}$ distances less than $3.0 \AA$ with five deuterons. Although the $\mathrm{N} \cdot \mathrm{C}$. O distances are long, 2.97 and $3.07 \AA$, they correspond to normal, nearly linear $\mathrm{N}-\mathrm{D} \cdot \mathrm{O}$ bonds. Of the six $\mathrm{O} \cdots \mathrm{O}$ distances, the neutron diffraction analysis revealed that there were
(1) a non-bonded intramolecular distance of $2 \cdot 64 \AA$,

(2) a non-bonded intermolecular distance of $2.79 \AA$, $\mathrm{C}=\mathrm{O} \cdot \mathrm{O}=\mathrm{C}$,
(3) a nearly linear, 175°, deuteron bond of $2.56 \AA$, $\mathrm{N}-\mathrm{O}-\mathrm{D} \cdot \mathrm{OD}_{2}$
(4) a not so linear, 162°, deuteron bond of $2.76 \AA$, $\mathrm{D}-\mathrm{O}-\mathrm{D} \cdot \mathrm{O}=\mathrm{C}$,
(5) a bifurcated deuteron bond $D-O-D<\begin{gathered}D \\ O=N \\ O=C\end{gathered}$
in which the deuteron to oxygen distances are nearly equal at 2.07 to $2 \cdot 10 \AA$, and the $0 \cdots$ O distances are 2.96 and $2.79 \AA$, with an angle of 55° between them.

It is apparent from the results of this work that $\mathrm{O} \cdots \mathrm{O}$ distances can sometimes be misleading if used as the sole criterion for hydrogen bonding. Non-bonded $\mathrm{O} \cdots \mathrm{O}$ separations and $\mathrm{O}(\mathrm{H}) \cdots \mathrm{O}$ bond lengths vary over the same spectrum of distance depending on the stereochemical environment and the special feature of a hydrogen bond is that it permits a proton to be placed between two oxygen atoms without increasing the oxygen to oxygen separation beyond the normal range associated with the non-bonded distances.

A proposed hydrogen bonding scheme for the dilituric acid trihydrate structure is shown in Fig. 8(c).

Table 5. Non-bonding interatomic distances less than $3.5 \AA$ between sheets

The following roman numbers give the symmetry relationship of the atoms concerned

I		x	y	z
II		$-y$		$1-z$
III		$-x \quad 1-y$		$1-z$
IV		$1-x \quad-y$		1-z
V		$1-x$	$1-y$	1-z
VI		$\frac{1}{2}-x$	y	$\frac{3}{2}-z$
VII		$\frac{1}{2}-x \quad-$		$\frac{3}{2}-z$
VIII		$\frac{3}{2}-x$	$\begin{array}{r} \frac{1}{2}+y \\ -\frac{1}{2}+y \end{array}$	2 $\frac{3}{2}-z$
IX		$\frac{3}{2}-x \quad-$		$\frac{3}{2}-z$
Atom i		Atom j		$d(i j)$
$\mathrm{O}(7) \mathrm{I}$	A	C(4)IX	B	$3 \cdot 18$ A
$\mathrm{O}(6) \mathrm{I}$	A	C(2)VIII	B	$3 \cdot 21$
$\mathrm{C}(4) \mathrm{I}$	A	$\mathrm{O}(4)$ VIII	A	$3 \cdot 21$
W(2)I		$\mathrm{C}(6) \mathrm{VI}$	B	$3 \cdot 21$
$\mathrm{C}(2) \mathrm{I}$	A	W(3)V		$3 \cdot 24$
$\mathrm{O}(7) \mathrm{I}$	B	O (7)III	B	$3 \cdot 32$
$\mathrm{O}(2) \mathrm{I}$	A	W(1)IV		$3 \cdot 26$
$\mathrm{O}(5) \mathrm{I}$	B	W(5)IV		$3 \cdot 28$
$\mathrm{O}(7) \mathrm{I}$	B	N(5)IV	B	$3 \cdot 30$
$\mathrm{O}(4) \mathrm{I}$	B	O(7)IX	A	$3 \cdot 35$
$\mathrm{O}(2) \mathrm{I}$	B	$\mathrm{O}(6) \mathrm{IX}$	A	$3 \cdot 35$
$\mathrm{N}(1) \mathrm{I}$	B	W(2)VII		3-37
W(1)I		W(6)VII		$3 \cdot 39$
$\mathrm{O}(4) \mathrm{I}$	B	N(5)IX	A	$3 \cdot 41$
$\mathrm{N}(3) \mathrm{I}$	B	$\mathrm{O}(6) \mathrm{IX}$	A	$3 \cdot 42$
$\mathrm{O}(2) \mathrm{I}$	A	W(3)IV		$3 \cdot 43$
W(2)I		N(1)VII	B	$3 \cdot 43$
N(5)I	A	$\mathrm{O}(4) \mathrm{IX}$	B	$3 \cdot 46$
$\mathrm{O}(6) \mathrm{I}$	A	N(3)VIII	B	$3 \cdot 42$
O(4)I	B	O(5)IX	A	$3 \cdot 46$
W(3)I		N(1)IV	A	$3 \cdot 48$
N(5)I	A	C(4)IX	B	$3 \cdot 48$
$\mathrm{O}(6) \mathrm{I}$	B	W(2)VII		$3 \cdot 47$
$\mathrm{N}(3) \mathrm{I}$	B	C(6)IX	A	$3 \cdot 49$
$\mathrm{N}(3) \mathrm{I}$	A	O(4)VIII	A	$3 \cdot 46$
$\mathrm{O}(7) \mathrm{I}$	A	C(4)VIII	B	$3 \cdot 29$
$\mathrm{O}(6) \mathrm{I}$	A	$\mathrm{C}(2) \mathrm{IX}$	B	$3 \cdot 27$
C(4)I	A	$\mathrm{O}(4) \mathrm{IX}$	A	$3 \cdot 25$
W(2)I		C(6)VII	B	$3 \cdot 28$
$\mathrm{C}(2) \mathrm{I}$	A	W(3)IV		$3 \cdot 28$
$\mathrm{O}(7) \mathrm{I}$	B	O(7)II	B	$3 \cdot 22$
W(5)I		W(6)VII		$3 \cdot 31$
$\mathrm{O}(5) \mathrm{I}$	B	W(5)V		$3 \cdot 43$
$\mathrm{O}(7) \mathrm{I}$	B	$\mathrm{N}(5) \mathrm{V}$	B	$3 \cdot 37$
O(4)I	B	$\mathrm{O}(7) \mathrm{VIII}$	A	$3 \cdot 45$
$\mathrm{O}(2) \mathrm{I}$	B	O(6)VIII	A	$3 \cdot 40$
N(1)I	B	W(2)VI		$3 \cdot 43$
C(4)I	A	C(4)IX	A	$3 \cdot 42$
$\mathrm{O}(4) \mathrm{I}$	B	N(5)VIII	A	$3 \cdot 46$
O(4)I	A	C(5)IX	A	$3 \cdot 43$
$\mathrm{O}(2) \mathrm{I}$	A	W(3)V		$3 \cdot 39$
W(2)I		N(1)VI	B	$3 \cdot 37$
N(5)I	A	$\mathrm{O}(4) \mathrm{VIII}$	B	$3 \cdot 41$
C(5)I	A	$\mathrm{O}(4) \mathrm{VIII}$	A	$3 \cdot 43$
O(4)I	A	N(3)IX	A	$3 \cdot 46$
W(3)I		$\mathrm{N}(1) \mathrm{V}$	A	$3 \cdot 40$
O(7)I	A	$\mathrm{N}(3) \mathrm{IX}$	B	$3 \cdot 48$
$\mathrm{O}(6) \mathrm{I}$	B	W(2)VI		$3 \cdot 48$
C(6)I	A	$\mathrm{O}(2) \mathrm{IX}$	B	$3 \cdot 50$

A denotes atoms in molecule A. B denotes atoms in molecule B.

It is based on the two following assumptions, which we believe are stereochemically reasonable; that the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds are normal and nearly linear, and

Table 6. Van der Waals distances less than $4.0 \AA$ between atoms in the same sheet

The following roman numbers give the symmetry relationship of the atoms concerned

I	x	y	z
II	$\frac{1}{2}+x$	$\frac{1}{2}-y$	$\frac{1}{2}+z$
III	$-\frac{1}{2}+x$	$\frac{1}{2}-y$	$\frac{1}{2}+z$
IV	$\frac{1}{2}+x$	$\frac{1}{2}-y$	$-\frac{1}{2}+z$
V	$-\frac{1}{2}+x$	$\frac{1}{2}-y$	$-\frac{1}{2}+z$
VI	$-1+x$	y	z

Atom i		Atom j		$d(i j)$
$\mathrm{O}(5) \mathrm{I}$	B	W(2)IV		$3.03 \AA$
$\mathrm{O}(7) \mathrm{I}$	A	$\mathrm{O}(7) \mathrm{II}$	B	$3 \cdot 26$
N(5)I	B	W(2)IV		3.31
$\mathrm{O}(2) \mathrm{I}$	B	$\mathrm{O}(2) \mathrm{V}$	A	$3 \cdot 56$
$\mathrm{O}(5) \mathrm{I}$	A	W(1)II		$3 \cdot 58$
$\mathrm{O}(2) \mathrm{I}$	B	$\mathrm{O}(6) \mathrm{V}$	A	$3 \cdot 58$
$\mathrm{O}(2) \mathrm{I}$	B	C(2)II	A	$3 \cdot 62$
$\mathrm{N}(1) \mathrm{I}$	B	C(2)III	A	$3 \cdot 65$
$\mathrm{O}(6) \mathrm{I}$	B	W(6)I		$3 \cdot 66$
C(4)I	B	O(4)I	A	$3 \cdot 68$
$\mathrm{O}(2) \mathrm{I}$	A	$\mathrm{O}(4) \mathrm{I}$	B	$3 \cdot 68$
N(1)I	B	N(1)III	A	$3 \cdot 69$
$\mathrm{O}(2) \mathrm{I}$	B	C(6)II	A	$3 \cdot 70$
$\mathrm{C}(2) \mathrm{I}$	B	O(4)I	A	$3 \cdot 72$
$\mathrm{C}(2) \mathrm{I}$	B	W(3)II		$3 \cdot 73$
C(2)I	A	W(6)III		3.74
$\mathrm{O}(6) \mathrm{I}$	B	W(4)I		3.74
C(4)I	A	N(3)I	B	$3 \cdot 75$
N(5)I	B	W(5)VI		3.84
$\mathrm{N}(3) \mathrm{I}$	B	W (3)II		$3 \cdot 86$
C(4)I	B	W(6)III		3.90
$\mathrm{N}(5) \mathrm{I}$	A	W(2)I		3.96
N(5) I	B	W(6)III		3.97
$\mathrm{O}(5) \mathrm{I}$	A	W(5)II		3.08
N(5)I	A	W(5)II		$3 \cdot 29$
$\mathrm{O}(4) \mathrm{I}$	B	$\mathrm{O}(4) \mathrm{I}$	A	3.50
$\mathrm{C}(6) \mathrm{I}$	B	W(5)I		$3 \cdot 57$
$\mathrm{O}(2) \mathrm{I}$	A	O(6)IV	B	$3 \cdot 58$
$\mathrm{C}(2) \mathrm{I}$	B	$\mathrm{O}(2) \mathrm{V}$	A	$3 \cdot 62$
$\mathrm{C}(2) \mathrm{I}$	B	N(1)II	A	3.64
W (2)I		C(6)I	A	$3 \cdot 66$
C(4)I	A	$\mathrm{O}(4) \mathrm{I}$	B	3.67
W (3)I		$\mathrm{O}(6) \mathrm{I}$	A	$3 \cdot 67$
$\mathrm{O}(2) \mathrm{I}$	B	$\mathrm{O}(4) \mathrm{I}$	A	$3 \cdot 68$
W(4)I		$\mathrm{O}(5) \mathrm{V}$	A	$3 \cdot 70$
$\mathrm{C}(2) \mathrm{I}$	A	$\mathrm{O}(4) \mathrm{I}$	B	$3 \cdot 71$
$\mathrm{C}(6) \mathrm{I}$	B	$\mathrm{O}(2) \mathrm{III}$	A	3.72
C(4)I	B	N(3)I	A	$3 \cdot 73$
$\mathrm{O}(6) \mathrm{I}$	A	W(l)I		3.74
$\mathrm{N}(3) \mathrm{I}$	A	N(3)I	B	3.75
$\mathrm{O}(5) \mathrm{I}$	B	W(1)IV		$3 \cdot 78$
C(4)I	A	W(3)II		3.85
N(3)I	A	W(6)III		$3 \cdot 89$
N(5)I	A	W(3)II		$3 \cdot 90$
N(5)I	A	W(3)I		$3 \cdot 90$
$\mathrm{O}(5) \mathrm{I}$	B	W(4)III		3.97

A denotes atoms in molecule A. B denotes atoms in molecule B.
that the $\mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}$ distances which make angles of 60° or less correspond to bifurcated bonds; i.e. those at $W(2), W(3), W(5)$ and $W(6)$ making angles of $58^{\circ}, 57^{\circ}, 60^{\circ}$ and 55°, respectively. This scheme accounts for all the intermolecular $\mathrm{O}-\mathrm{O}$ distances less than $3.0 \AA$, and for all the available protons. It gives an extremely compact layer structure, corresponding to the high crystal density of $1.69 \mathrm{~g} . \mathrm{cm}^{-3}$.

Fig. 9. Hydrogen bonding of the water molecules in the [b] direction.
Table 7. Distances from the least-square planes and equation of the planes in \AA units

Atom	Molecule A	Molecule B
$\mathrm{~N}(1)$	-0.000	-0.012
$\mathrm{C}(2)$	0.002	-0.014
$\mathrm{O}(2)$	-0.014	-0.044
$\mathrm{~N}(3)$	0.007	0.014
$\mathrm{C}(4)$	-0.009	-0.001
$\mathrm{O}(4)$	0.012	0.082
$\mathrm{C}(5)$	-0.007	0.016
$\mathrm{~N}(5)$	-0.020	-0.036
$\mathrm{O}(5)$	0.018	-0.085
$\mathrm{O}(7)$	-0.019	0.025
$\mathrm{C}(6)$	0.006	0.018
$\mathrm{O}(6)$	0.025	0.036

(A) $\quad 0.0241 x+0.9995 y+0.0111 z=1.8996$
(B) $-0.0364 x+0.9993 y+0.0183 z=1.7325$

The equation of the plane is of the form, $a x+b y+c z=d$, which corresponds to the crystallographic axes.

Thenearest-neighbour coordination of the watermolecules is shown in Fig. 10. W(1) and W(4) are respectively three- and four-hydrogen bonded to other water molecules only. The former is distorted planar trigonal and the latter distorted tetrahedral. This is common in hydrate structures. As pointed out by Clark (1963), in almost one quarter of the hydrated structures which have been studied the water molecules have a planar threefold environment. The water oxygen atoms $W(2), W(3)$ and $W(5)$ have four nearest neighbours approximately in a plane, one of which is another water molecule. According to our assignment
of proton positions, the hydrogen bonding is distorted trigonal planar in each case. Oxygen W(6) has five nearest neighbours and four hydrogen bonds in a very distorted tetrahedral arrangement.

The intermolecular $0 \cdots 0$ distances, which are given in Table 4 and Fig. 10, range from 2.38 to $2.87 \AA$. According to the hydrogen bonding proposed in Fig. 9, they all involve proton interaction either as linear or bifurcated hydrogen-bonds. The $\mathrm{N}(\mathrm{H}) \cdots \mathrm{O}$ distances are 2.83 to $2.86 \AA$. The $\mathrm{W}(1) \cdots \mathrm{W}(2)$ distance of $2.38 \AA$ is exceptionally short, since hydrogenbond separations less than $2.5 \AA$ are not commonly reported. In oxalic acid dihydrate, the water-oxygen to carbonyl-oxygen distance is $2 \cdot 491 \AA$ (Ahmed \& Cruickshank, 1953), and more recently a short hydrogen bond of $2 \cdot 393+0.018 \AA$ has been reported in di- p-chlorophenyl hydrogen phosphate by Calleri \& Speakman (1963). In caffeine hydrate (Sutor, 1958) and biuret hydrate (Hughes, Yakel \& Freeman, 1961) hydrogen bonds of $2 \cdot 36$ and $2 \cdot 48 \AA$ respectively occur in structures where there is disorder between occupied and vacant water sites. There was no evidence of a corresponding non-stoichiometry in this structure. Both W(1) and W(2) have normal peak heights and there were no discrepancies at their positions on the difference map. However, W (2) does have a B_{22} thermal parameter about 50% larger than that of the other water oxygen atoms, and its y parameter is very close to $0 \cdot 25$. In order to have a $\mathrm{W}(1) \cdots \mathrm{W}(2)$ distance of $2 \cdot 50 \AA$, the y parameter of $\mathrm{W}(2)$ would have to be increased to 0.340 . Such an arbitrary shift increased the agreement factor by 10%, and the subsequent differential syntheses moved the y parameter back to 0.247 . A similar calculation, placing $\mathrm{W}(2)$ at exactly 0.2500 , gave a shift-back to the original value of $0 \cdot 2464$. We could find no internal evidence from the behavour of the y and B_{22} parameters of W(2) in refinement to lead us to reject these values. As mentioned above, the matrix correlation factors in the
least-squares refinement were quite small, although those for $W(1)$ and $W(2)$ were in fact, the largest observed. We plan to undertake a neutron diffraction study in order to establish the hydrogen positions directly.

This research was supported by the Public Health Service, National Institutes of Health through Grant B2763.

References

Ahmed, F. R. \& Cruickshank, D. W. J. (1953). Acta Cryst. 6, 385.
Bolton, W. (1963a). Acta Cryst. 16, 950.
Bolton, W. (1963b). Acta Cryst. 16, 166.
Busing, W. \& Levy, H. A. (1959). Oak Ridge National Laboratory, Central Files No. 59-4-37.
Calleri, M. \& Speakman, J. C. (1963). Abst. of Sixth I.U.Cr. Congress, Acta Cryst. 16, A 61.

Сно, S. (1963). Unpublished work.
Clark, J. R. (1963). Rev. Pure Appl. Chem. 13, 50.
Craven, B. M. (1963). Unpublished work.
Craven, B. M. \& Mascarenhas, Y. (1964). Acta Cryst. 17, 407.
Craven, B. M. \& Takei, W. J. (1964). Acta Cryst. 17, 415.
Geller, S. (1961). Acta Cryst. 14, 1026.
Hughes, E. W., Yakel, H. L. \& Freeman, H. C. (1961). Acta Cryst. 14, 345.
Jeffrey, G. A., Ghose, S. \& Warwicker, J. O. (1961). Acta Cryst. 14, 881.
McMullan, R. K., Chu, S. \& Shiono, R. (1962). Program No. 377. I.U.Cr. World List of Crystallographic Computing Programs.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst. 13, 273.

Shiono, R. (1962). Programs Nos. 330, 376. I.U.Cr. World List of Crystallographic Computing Programs. Sutor, J. (1958). Acta Cryst. 11, 453.

